
Entanglement in a Quantum Annealing Processor

T. Lanting,1,* A. J. Przybysz,1 A. Yu. Smirnov,1 F. M. Spedalieri,2,3 M. H. Amin,1,4 A. J. Berkley,1 R. Harris,1 F. Altomare,1

S. Boixo,2,5 P. Bunyk,1 N. Dickson,1,† C. Enderud,1 J. P. Hilton,1 E. Hoskinson,1 M.W. Johnson,1 E. Ladizinsky,1

N. Ladizinsky,1 R. Neufeld,1 T. Oh,1 I. Perminov,1 C. Rich,1 M. C. Thom,1 E. Tolkacheva,1 S. Uchaikin,1,6

A. B. Wilson,1 and G. Rose1
1D-Wave Systems Inc., 3033 Beta Avenue, Burnaby, British Columbia, Canada V5G 4M9

2Information Sciences Institute, University of Southern California, Los Angeles, California 90089, USA
3Center for Quantum Information Science and Technology, University of Southern California,

Los Angeles, California 90089, USA
4Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

5Google, 340 Main Street, Venice, California 90291, USA
6National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russia

(Received 13 December 2013; published 29 May 2014)

Entanglement lies at the core of quantum algorithms designed to solve problems that are intractable by
classical approaches. One such algorithm, quantum annealing (QA), provides a promising path to a
practical quantum processor. We have built a series of architecturally scalable QA processors consisting of
networks of manufactured interacting spins (qubits). Here, we use qubit tunneling spectroscopy to measure
the energy eigenspectrum of two- and eight-qubit systems within one such processor, demonstrating
quantum coherence in these systems. We present experimental evidence that, during a critical portion of
QA, the qubits become entangled and entanglement persists even as these systems reach equilibrium with a
thermal environment. Our results provide an encouraging sign that QA is a viable technology for large-
scale quantum computing.
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I. INTRODUCTION

The past decade has been exciting for the field of
quantum computation. A wide range of physical imple-
mentations of architectures that promise to harness quan-
tum mechanics to perform computation have been studied
[1–3]. Scaling these architectures to build practical pro-
cessors with many millions to billions of qubits will be
challenging [4,5]. A simpler architecture, designed to
implement a single quantum algorithm such as quantum
annealing (QA), provides a more practical approach in the
near term [6,7]. However, one of the main features that
makes such an architecture scalable, namely, a limited
number of low-bandwidth external control lines [8], pro-
hibits many typical characterization measurements used in
studying prototype universal quantum computers [9–14].
These constraints make it challenging to experimentally
determine whether a scalable QA architecture, one that is

inevitably coupled to a thermal environment, is capable of
generating entangled states [15–18]. A demonstration of
entanglement is considered to be a critical milestone for any
approach to building a quantum computing technology.
Herein, we demonstrate an experimental method to detect
entanglement in subsections of a quantum annealing
processor to address this fundamental question.

II. QUANTUM ANNEALING

QA is designed to find the low-energy configurations of
systems of interacting spins. Awide variety of optimization
problems naturally map onto this physical system [19–22].
A QA algorithm is described by a time-dependent
Hamiltonian for a set of N spins, i ¼ 1;…; N,

HSðsÞ ¼ EðsÞHP −
1

2

X
i

ΔðsÞσxi ; (1)

where the dimensionless HP is

HP ¼ −
X
i

hiσ
z
i þ

X
i<j

Jijσ
z
iσ

z
j (2)

and σx;zi are Pauli matrices for the ith spin. The energy
scales Δ and E are the transverse and longitudinal energies
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of the spins, respectively, and the biases hi and couplings
Jij encode a particular optimization problem. The time-
dependent variation of Δ and E is parametrized by s≡ t=tf
with time t ∈ ½0; tf� and total run (anneal) time tf. QA is
performed by first setting Δ ≫ E, which results in a ground
state into which the spins can be easily initialized [6]. Then
Δ is reduced and E is increased until E ≫ Δ. At this point,
the system Hamiltonian is dominated by HP, which
represents the encoded optimization problem. At the end
of the evolution, a ground state ofHP represents the lowest
energy configuration for the problem Hamiltonian and thus
a solution to the optimization problem.

III. QUANTUM ANNEALING PROCESSOR

We have built a processor that implements HS using
superconducting flux qubits as effective spins [6,7,23,24].
Figure 1(a) shows a photograph of the processor. Figure 1(c)
shows the circuit schematic of a pair of flux qubits with the
magnetic flux controls Φx

qi and Φx
ccjj. The annealing param-

eter s is controlled with the global bias Φx
ccjjðtÞ (see

Appendix A for the mapping between s and Φx
ccjj and a

description of how Φx
qi is provided for each qubit). The

strength and sign of the inductive coupling between pairs of
qubits is controlled with magnetic fluxΦx

co;ij that is provided
by an individual on-chip digital-to-analog converter for
each coupler [8]. The parameters hi and Jij are thus in situ
tunable, thereby allowing the encoding of a vast number of
problems. The time-dependent energy scales ΔðsÞ and EðsÞ
are calculated from measured qubit parameters and plotted
in Fig. 1(d). We calibrate and correct the individual flux
qubit parameters in our processor to ensure that every qubit
has a close-to-identical Δ and E (the energy gap Δ is
balanced to better than 8% between qubits and E to better
than 5%). See Appendix A for measurements of these
energy scales. The interqubit couplers are calibrated as
described in Ref. [25]. The processor we study here is
mounted on the mixing chamber of a dilution refrigerator
held at temperature T ¼ 12.5 mK.

IV. FERROMAGNETICALLY COUPLED
INSTANCES

The experiments reported herein focus on one of the
eight-qubit unit cells of the larger QA processor as
indicated in Fig. 1(a). The unit cell is isolated by setting
all couplings outside of that subsection to Jij ¼ 0 for all
experiments. We then pose specific HP instances with
strong ferromagnetic (FM) coupling Jij ¼ −2.5 and hi ¼ 0
to that unit cell, as illustrated in Figs. 1(e) and 1(f). These
configurations produce coupled two- and eight-qubit sys-
tems, respectively. The Hamiltonian (1) describes the
behavior of these systems during QA.
Typical observations of entanglement in the quantum

computing literature involve applying interactions between

FIG. 1. (a) Photograph of the QA processor used in this
study. We report measurements performed on the eight-qubit
unit cell indicated. The bodies of the qubits are extended
loops of Nb wiring (highlighted with red rectangles). Inter-
qubit couplers are located at the intersections of the qubit
bodies. (b) Electron micrograph showing the cross section of
a typical portion of the processor circuitry (described in more
detail in Appendix A). (c) Schematic diagram of a pair of
coupled superconducting flux qubits with external control
biases Φx

qi and Φx
ccjj and with flux through the body of the ith

qubit denoted as Φqi. An inductive coupling between the
qubits is tuned with the bias Φx

co;ij. (d) Energy scales ΔðsÞ
and EðsÞ in Hamiltonian (1) calculated from a rf SQUID
model based on the median of independently measured device
parameters for these eight qubits. See Appendix A for more
details. (e),(f) The two- and eight-qubit systems studied were
programmed to have the topologies shown. Qubits are
represented as gold spheres, and interqubit couplers, set to
J ¼ −2.5, are represented as silver lines.
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qubits, removing these interactions, and then performing
measurements. Such an approach is well suited to gate-
model architectures (see, e.g., Ref. [11]). During QA,
however, the interaction between qubits is determined by
the particular instance of HP, in this case, a strongly
ferromagnetic instance, and cannot be removed. In this
way, systems of qubits undergoing QA have much more in
common with condensed-matter systems, such as quantum
magnets, for which interactions cannot be turned off.
Indeed, a growing body of recent theoretical and exper-
imental work suggests that entanglement plays a central
role in many of the macroscopic properties of condensed-
matter systems [26–32]. Here, we introduce other
approaches to quantifying entanglement that are suited
to QA processors. We establish experimentally that the
two- and eight-qubit systems, comprising macroscopic

superconducting flux qubits coupled to a thermal bath at
12.5 mK, become entangled during the QA algorithm.
To illustrate the evolution of the ground state of these

instances during QA, a sequence of wave functions for the
ground state of the two-qubit system is shown in Fig. 2. A
similar sequence could be envisioned for the eight-qubit
system. We consider these systems subject to zero biases,
hi ¼ 0. For small s, Δ ≫ 2jJijjE, and the ground state of
the system can be expressed as a product of the ground
states of the individual qubits: ⊗N

i¼1 ð1=
ffiffiffi
2

p Þðj↑ii þ j↓iiÞ,
where N ¼ 2, 8 [see Fig. 2(a)]. For intermediate s,
Δ≲ 2jJijjE, and the ground and first excited states of
the processor are approximately the delocalized super-
positions j�i≡ ðj↑…↑i � j↓…↓iÞ= ffiffiffi

2
p

[Fig. 2(b)]. The
state jþi is the maximally entangled Bell [or Greenberger-
Horne-Zeilinger (GHZ), for eight qubits] state [17].
As s → 1, the energy gap g between the ground and
first excited states approaches g≡ ðE2 − E1Þ ∝ ΔðsÞN=
½2jJijjEðsÞ�N−1 and vanishes as ΔðsÞ → 0 [Fig. 2(c)]. At
some point late in the evolution, g becomes less than kBT,
where T characterizes the temperature of the thermal
environment to which the qubits are coupled. At this point,
we expect the system to evolve into a mixed state of jþi
and j−i, and the entanglement will vanish with g for
sufficiently long thermalization times. At the end of QA,
s ¼ 1, Δ ∼ 0, and Hamiltonian (1) predicts two degenerate
and localized ground states, namely, the FM-ordered states
j↑…↑i and j↓…↓i.

V. MEASUREMENTS

In order to experimentally verify the change in spectral
gap in the two- and eight-qubit systems during QA, we use
qubit tunneling spectroscopy (QTS), as described in more
detail in Ref. [33] and Appendix B. QTS allows us to
measure the eigenspectrum and level occupation of a
system during QA by coupling an additional probe qubit
to the system. We perform QTS on the two- and eight-qubit
systems shown in Figs. 1(e) and 1(f). Figures 3(a) and 3(b)
show the measured energy eigenspectrum for the two- and
eight-qubit systems, respectively, as a function of s. The
measurements are initial tunneling rates of the probe qubit,
normalized by the maximum observed tunneling rate.
Peaks in the measured tunneling rate map the energy
eigenstates of the system under study [33]. As the system
evolves (increasing s), ΔðsÞ in Hamiltonian (1) decreases
and the gap between ground and first excited states closes.
The spectroscopy data in Fig. 3(a) reveal two higher-energy
eigenstates. We observe a similar group of higher-energy
excited states for the eight-qubit system in Fig. 3(b). Note
that g closes earlier in the QA algorithm for the eight-qubit
system as compared to the two-qubit system. In all of the
panels of Fig. 3, solid curves indicate the theoretical energy
levels predicted by Hamiltonian (1) using the measured

(a) (b) (c)

FIG. 2. An illustration of entanglement between two qubits
during QA with hi ¼ 0 and J < 0. We plot calculations of the
two-qubit ground-state wave-function modulus squared in the
basis of Φq1 and Φq2, the flux through the bodies of q1 and q2,
respectively. The color scale encodes the probability density with
red corresponding to high probability density and blue corre-
sponding to low probability density. We use Hamiltonian (1) and
the energies in Fig. 1(d) for the calculation. The four quadrants
represent the four possible states of the two-qubit system in the
computation basis. We also plot the single-qubit potential energy
(U versus Φq1) calculated from measured device parameters.
(a) At s ¼ 0 (Δ ≫ 2jJjE ∼ 0), the qubits weakly interact and are
each in their ground state ð1= ffiffiffi

2
p Þðj↑i þ j↓iÞ, which is delocal-

ized in the computation basis. The wave function shows no
correlation between q1 and q2 and, therefore, their wave functions
are separable. (b) At intermediate s (Δ ∼ 2jJjE), the qubits are
entangled. The state of one qubit is not separable from the state of
the other, as the ground state of the system is approximately
jþi≡ ðj↑↑i þ j↓↓iÞ= ffiffiffi

2
p

. A clear correlation is seen between q1
and q2. (c) As s → 1, Δ ≪ 2jJjE, and the ground state of the
system approaches jþi. However, the energy gap g between the
ground state (jþi) and the first excited state (j−i) is closing.
When the qubits are coupled to a bath with temperature T and
g < kBT, the system is in a mixed state of jþi and j−i and
entanglement is extinguished.
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ΔðsÞ and EðsÞ. The agreement between the experimentally
obtained spectrum and the theoretical spectrum is good.
The data presented in Figs. 3(a) and 3(b) indicate that the

spectral gap between ground and first excited state decreases
monotonically with s when all hi ¼ 0. Under these bias
conditions, these systems possess Z2 symmetry between the
states j↑…↑i and j↓…↓i. The degeneracy between these
states is lifted by finite ΔðsÞ. To explicitly demonstrate that
the spectral gap at hi ¼ 0 is due to the avoided crossing of
j↑…↑i and j↓…↓i, we performQTS at fixed s as a function
of a “diagnostic” bias hi ≠ 0 that was uniformly applied to
all qubits, thus sweeping the systems through degeneracy at
hi ¼ 0. As a result, either the state j↑…↑i or j↓…↓i
becomes energetically favored, depending upon the sign
of hi. Hamiltonian (1) predicts an avoided crossing, as a
function of hi, between the ground and first excited states at
degeneracy, where hi ¼ 0, with a minimum energy gap g.
The presence of such an avoided crossing is a signature of
ground-state entanglement [14,35]. For large gaps, g > kBT,
there is persistent entanglement at equilibrium (see
Refs. [18,26,28,29,31]).

We experimentally verify the existence of avoided
crossings at multiple values of s in both the two- and
eight-qubit systems by using QTS across a range of biases
hi ∈ f−4; 4g. In Fig. 3(c), we show the measured spectrum
of the two-qubit system at s ¼ 0.339 up to an energy of
6 GHz for a range of bias hi. The ground states at the far left
and far right of the spectrum are the localized states j↓↓i
and j↑↑i, respectively. At hi ¼ 0, we observe an avoided
crossing between these two states. We measure an energy
gap g at zero bias, hi ¼ 0, between the ground state and the
first excited state, g=h ¼ 1.75� 0.08 GHz, by fitting a
Gaussian profile to the tunneling rate data at these two
lowest-energy levels and subtracting the centroids. Here, h
(without any subscript) is the Planck constant. Figure 3(d)
shows the two-qubit spectrum later in the QA algorithm, at
s ¼ 0.351. The energy gap has decreased to g=h ¼
1.21� 0.06 GHz. Note that the error estimates for the
energy gaps are derived from the uncertainty in extracting
the centroids from the rate data. We discuss the actual
source of the underlying Gaussian widths (the observed
level broadening) below. For both the two- and eight-qubit

(a) (b)

(c) (d) (e) (f)

FIG. 3. Spectroscopic data for two- and eight-qubit systems plotted in false color (color indicates normalized qubit tunnel
spectroscopy rates). A nonzero measurement (false color) indicates the presence of an eigenstate of the probed system at a given energy
(ordinate) and s (abscissa). Panel (a) shows the measured eigenspectrum for the two-qubit system as a function of s. Panel (b) shows a
similar set of measurements for the eight-qubit system. The ground-state energy E1 has been subtracted from the data to aid in
visualization. The solid curves indicate the theoretical expectations for the energy eigenvalues using independently calibrated qubit
parameters and Hamiltonian (1). We emphasize that the solid curves are not a fit, but rather a prediction based on Hamiltonian (1) and
measurements of Δ and E. The slight differences between the high-energy spectrum prediction and measurements are due to the
additional states in the rf SQUID flux qubits. A full rf SQUID model that is in agreement with the measured high-energy spectrum is
explored in the Supplemental Material [34]. Panels (c) and (d) show measured eigenspectra of the two-qubit system versus h1 ¼ h2 ≡ hi
for two values of annealing parameter s, s ¼ 0.339 and s ¼ 0.351 from left to right, respectively. Note the avoided crossing at hi ¼ 0.
Panels (e) and (f) show analogous measured eigenspectra for the eight-qubit system (with h1 ¼ � � � ¼ h8 ≡ hi). Because the eight-qubit
gap closes earlier in QA for this system, we show measurements for smaller s, s ¼ 0.271 and s ¼ 0.284 from left to right, respectively.
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systems, we confirm that the expectation values of σz for all
devices change sign as the system moves through the
avoided crossing (see Figs. 1–3 of the Supplemental
Material [34] and Ref. [35]).
Figures 3(e) and 3(f) show similar measurements of the

spectrum of eight coupled qubits at s ¼ 0.271 and s ¼
0.284 for a range of biases hi. Again, we observe an
avoided crossing at hi ¼ 0. The measured energy gaps at
s ¼ 0.271 and 0.284 are g=h ¼ 2.2� 0.08 GHz and
g=h ¼ 1.66� 0.06 GHz, respectively. Although the eight-
qubit gaps in Figs. 3(e) and 3(f) are close to the two-qubit
gaps in Figs. 3(c) and 3(d), they are measured at quite
different values of the annealing parameter s. As expected,
the eight-qubit gap is closing earlier in the QA algorithm as
compared to the two-qubit gap. The solid curves in
Figs. 3(c)–3(f) indicate the theoretical energy levels pre-
dicted by Hamiltonian (1) and measurements of ΔðsÞ and
EðsÞ. Again, the agreement between the experimentally
obtained spectra and the theoretical spectra is good.
For the early and intermediate parts of QA, the energy

gap g is larger than temperature, g ≫ kBT, for both the
two- and eight-qubit systems. We expect that if we hold
the systems at these s, then the only eigenstate with
significant occupation will be the ground state. We
confirm this by using QTS in the limit of long tunneling
times to probe the occupation fractions. Details are

provided in Appendix C. Figures 4(a) and 4(b) show
the measured occupation fractions of the ground and first
excited states as a function of s for both the two- and
eight-qubit systems. The solid curves show the equilib-
rium Boltzmann predictions for T ¼ 12.5 mK and are in
good agreement with the data.
The width of the measured spectral lines is dominated by

the noise of the probe device used to perform QTS [33].
The probe device is operated in a regime in which it is
strongly coupled to its environment, whereas the system
qubits we study are in the weak coupling regime. The
measured line widths, which do not increase with system
size, therefore, do not represent the intrinsic width of the
two- and eight-qubit energy eigenstates. During the inter-
mediate part of QA, the ground and first excited states are
clearly resolved. The ground state is protected by the
multiqubit energy gap g ≫ kBT, and these systems are
coherent. At the end of the annealing trajectory, the gap
between the ground state and first excited state shrinks
below the probe qubit line width of 0.4 GHz. An analysis of
spectroscopic data, presented in the Supplemental Material
[34], shows that the intrinsic energy levels remain distinct
until later in QA. The interactions between the two- and
eight-qubit systems and their respective environments
represent small perturbations to Hamiltonian (1), even in
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FIG. 4. (a),(b) Measurements of the occupation fraction, or population, of the ground state (P1) and first excited state (P2) of the two-
qubit and eight-qubit system, respectively, versus s. Early in the annealing trajectory, g ≫ kBT, and the system is in the ground state with
P1 ≲ 1. The solid curves show the equilibrium Boltzmann predictions for T ¼ 12.5 mK. (c) Concurrence C, negativity N , and witness
Wχ versus s for the two-qubit system. Early in QA, the qubits are weakly interacting, thus resulting in limited entanglement.
Entanglement peaks near s ¼ 0.37. For larger s, the gap between the ground and first excited state shrinks and thermal occupation of the
first excited state rises, thus extinguishing entanglement. Solid curves indicate the expected theoretical values of each witness or measure
using Hamiltonian (1) and Boltzmann statistics. (d) Negativity N and witness Wχ versus s for the eight-qubit system. For all s shown,
the nonzero negativity N and nonzero witness Wχ report entanglement. For s > 0.39 and s > 0.312 for the two-qubit and eight-qubit
systems, respectively, the shaded gray region denotes the regime in which the ground and first excited states cannot be resolved via our
spectroscopic method. Solid curves indicate the expected theoretical values of each witness or measure using Hamiltonian (1) and
Boltzmann statistics.
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the regime in which entanglement is beginning to fall due to
thermal mixing.

VI. ENTANGLEMENT DETECTION

The tunneling spectroscopy data show that, midway
through QA, both the two- and eight-qubit systems have
avoided crossings with the expected gap g ≫ kBT and have
ground-state occupation P1 ≃ 1. While observation of an
avoided crossing is evidence for the presence of an
entangled ground state [35], we can make this observation
more quantitative with entanglement measures and
witnesses.
For a large part of the QA algorithm, the two- and eight-

qubit systems are in their ground states with high occupa-
tion fraction. We, therefore, begin the analysis with a
susceptibility-based witness Wχ , which detects ground-
state entanglement. This witness does not require explicit
knowledge of Hamiltonian (1), but requires a nondegen-
erate ground state, confirmed with the avoided crossings
shown in Fig. 3, and high occupation fraction of the ground
state, confirmed early in QA by the measurements of
P1 ≃ 1 shown in Fig. 4. We then perform measurements
of all available linear cross susceptibilities

χij ≡ dhσzi i=d ~hj; (3)

where hσzi i is the expectation value of σzi for the ith qubit
and ~hj ¼ Ehj is a bias applied to the jth qubit. The
measurements are performed at the degeneracy point (in
the middle of the avoided crossings), where the classical
contribution to the cross susceptiblity is zero.
From these measurements, we calculateWχ as defined in

Ref. [35] (see Appendix D for more details). A nonzero
value of this witness detects ground-state entanglement,
and global entanglement in the case of the eight-qubit
system (meaning every possible bipartition of the eight-
qubit system is entangled). Figures 4(c) and 4(d) show Wχ

for the two- and eight-qubit systems. Note that for two
qubits at degeneracy, Wχ coincides with ground-state
concurrence. These results indicate that the two- and
eight-qubit systems are entangled midway through QA.
Note also that a susceptibility-based witness has a close
analogy to susceptibility-based measurements of nano-
magnetic systems that also report strong nonclassical
correlations [29,31].
The occupation fraction measurements shown in Fig. 4

indicate that midway through QA, the first excited state of
these systems is occupied as the energy gap g begins to
approach kBT. The systems are no longer in the ground
state but, rather, in a mixed state. To detect the presence of
mixed-state entanglement, we need knowledge about the
density matrix of these systems. Occupation fraction
measurements provide measurements of the diagonal
elements of the density matrix in the energy basis. We
assume that the density matrix has no off-diagonal elements

in the energy basis (they decay on time scales of several
nanoseconds). We relax this assumption below. Populations
P1 and P2 plotted in Figs. 4(a) and 4(b) indicate that the
system occupies these states with almost 100% probability.
This means that the density matrix can be written in the
form ρ ¼ P

2
i¼1 Pijψ iihψ ij, where jψ ii represents the ith

eigenstate of Hamiltonian (1).
We use the density matrix to calculate standard entan-

glement measures, Wootters’ concurrence C [18] for the
two-qubit system, and negativity N [16,36] for the
two- and eight-qubit system. For the maximally entangled
two-qubit Bell state, we note that C ¼ 1 and N ¼ 0.5.
Figure 4(c) shows C as a function of s. Midway through
QA, we measure a peak concurrence C ¼ 0.53� 0.05,
indicating significant entanglement in the two-qubit sys-
tem. This value of C corresponds to an entanglement of
formation Ef ¼ 0.388 (see Refs. [16,18] for definitions).
This is comparable to the level of entanglement,
Ef ¼ 0.378, obtained in Ref. [11]. Because concurrence
C is not applicable to more than two qubits, we use
negativity N to detect entanglement in the eight-qubit
system. For N > 2, N A;B is defined on a particular
bipartition of the system into subsystems A and B. We
define N to be the geometric mean of this quantity across
all possible bipartitions. A nonzero N indicates the
presence of global entanglement. Figures 4(c) and 4(d)
show the negativity calculated with measured P1 and P2

(and with the measured Hamiltonian parameters Δ and
EJij) as a function of s for the two- and eight-qubit systems.
The eight-qubit system has nonzero N for s < 0.315, thus
indicating the presence of mixed-state global entanglement.
Both concurrence C and negativityN decrease later in QA,
where the first excited state approaches the ground state and
becomes thermally occupied. The experimental values of
these entanglement measures are in agreement with the
theoretical predictions (solid lines in Fig. 4). The error bars
in Figs. 4(c) and 4(d) represent uncertainties in the
measurements of P1ðsÞ, P2ðsÞ, ΔðsÞ, and EðsÞ.
As stated above, the calculation of C and N relies on the

assumption that the off-diagonal terms in the density matrix
decay on time scales of several nanoseconds. We remove
this assumption and demonstrate entanglement through the
use of another witness WAB, defined on some bipartition
A-B of the eight-qubit system. The witness, described in
Appendix D, is designed in such a way that Tr½WABσ� ≥ 0
for all separable states σ. When Tr½WABρðsÞ� < 0, the state
ρðsÞ is entangled. Measurements of populations P1 and P2

provide a set of linear constraints on the density matrix of
the system ρðsÞ. We then obtain an upper bound on
Tr½WABρðsÞ� by searching over all ρðsÞ that satisfy these
linear constraints. If this upper bound is < 0, then we have
shown entanglement for the bipartition A-B [37]. Figure 5
shows the upper limit of the witness Tr½WABρðsÞ� for the
eight-qubit system. We plot data for the bipartition that
gives the median upper limit. The error bars are derived

T. LANTING et al. PHYS. REV. X 4, 021041 (2014)

021041-6



from a Monte Carlo analysis wherein we used the exper-
imental uncertainties in Δ and J to estimate the uncertainty
in Tr½WABρ�. We also plot data for the two partitions that
give the largest and smallest upper limits. For all values of
the annealing parameter s, except for the last two points,
upper limits from all possible bipartitions of the eight-qubit
system are below zero. In this annealing range, the eight-
qubit system is globally entangled.

VII. CONCLUSIONS

In summary, we provide experimental evidence for the
presence of quantum coherence and entanglement within
subsets of qubits inside a quantum annealing processor
during its operation. Our conclusion is based on four levels
of evidence: (a) the observation of two- and eight- qubit
avoided crossings with a multiqubit energy gap g ≫ kBT;
(b) the witness Wχ, calculated with measured cross
susceptibilities and coupling energies, which reports
ground-state entanglement of the two- and eight-qubit
systems [note that these two levels of evidence do not
require explicit knowledge of Hamiltonian (1)]; (c) the
measurements of energy eigenspectra and equibrium occu-
pation fractions during QA, which allow us to use
Hamiltonian (1) to reconstruct the density matrix, with
some weak assumptions, and calculate concurrence and
negativity (these standard measures of entanglement report

nonclassical correlations in the two- and eight-qubit sys-
tems); (d) the entanglement witness WAB, which is calcu-
lated with the measured Hamiltonian and with constraints
provided by the measured populations of the ground and
the first excited states (this witness reports global entan-
glement of the eight-qubit system midway through the QA
algorithm).
The observed entanglement is persistent at thermal

equilibrium, an encouraging result as any practical hard-
ware designed to run a quantum algorithm will be inevi-
tably coupled to a thermal environment. The experimental
techniques we discuss provide measurements of energy
levels, and their populations, for arbitrary configurations of
Hamiltonian parametersΔ, hi, Jij during the QA algorithm.
The main limitation of the technique is the spectral width of
the probe device. Improved designs of this device will
allow much larger systems to be studied. Our measure-
ments represent an effective approach for exploring the role
of quantum mechanics in QA processors and ultimately to
understanding the fundamental power and capability of
quantum annealing.
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APPENDIX A: QA PROCESSOR DESCRIPTION

1. Chip description

The experiments discussed in herein were performed on
a sample fabricated with a process consisting of a standard
Nb/AlOx/Nb trilayer, a TiPt resistor layer, planarized SiO2

dielectric layers, and six Nb wiring layers. The circuit
design rules include a minimum linewidth of 0.25 μm and
0.6-μm-diameter Josephson junctions. The processor chip
is a network of densely connected eight-qubit unit cells that
are more sparsely connected to each other (see Fig. 1 for
photographs of the processor). We report measurements
made on qubits from one of these unit cells. The chip is
mounted on the mixing chamber of a dilution refrigerator
inside an Al superconducting shield and temperature
controlled at 12.5 mK.

2. Qubit parameters

The processor facilitates quantum annealing of com-
pound-compound Josephson junction rf SQUID flux qubits
[38]. The qubits are controlled via the external flux biases
Φx

qi andΦ
x
ccjj, which allow us to treat them as effective spins

(see Fig. 1). Pairs of qubits interact through tunable

0.24 0.26 0.28 0.3
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

FIG. 5. Upper limit of the quantity Tr½WABρ� versus s for
several bipartitions A − B of the eight-qubit system. When this
quantity is less than 0, the system is entangled with respect to this
bipartition. The solid dots show the upper limit on Tr½WABρ� for
the median bipartition. The open dots above and below these are
derived from the two bipartitions that give the highest and lowest
upper limits on Tr½WABρ�, respectively. For the points at s > 0.3,
the measurements of P1 and P2 do not constrain ρ enough to
certify entanglement.
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inductive couplings [25]. The system can be described with
the time-dependent QA Hamiltonian,

HSðsÞ ¼ EðsÞ
�
−
XN
i

hiσ
z
i þ

X
i<j

Jijσ
z
iσ

z
j

�
−
1

2
ΔðsÞ

XN
i

σxi ;

(A1)

where σx;zi are Pauli matrices for the ith qubit, i ¼ 1;…; N.
The energy scales Δ and E are the transverse and longi-
tudinal energies of the spins, respectively, and the unitless
biases hi and couplings Jij encode a particular optimization

problem. We define ~hi ≡ Ehi and ~Jij ≡ EJij. We map the
annealing parameter s for this particular chip to a range of
Φx

ccjj with the relation

s≡ ðΦx
ccjjðtÞ − Φx

ccjj;initialÞ=ðΦx
ccjj;final − Φx

ccjj;initialÞ ¼ t=tf;

(A2)

where tf is the total anneal time. We implement QA for this
processor by ramping the external control Φx

ccjjðtÞ from
Φx

ccjj;initial ¼ 0.596 Φ0 (s ¼ 0) at t ¼ 0 to Φx
ccjj;final ¼ 0.666

Φ0 (s ¼ 1) at t ¼ tf. The energy scale E ≡Meff jIpqðsÞj2 is
set by the s-dependent persistent current of the qubit jIpqðsÞj
and the maximum mutual inductance between qubits
Meff ¼ 1.37 pH [8]. The transverse term in Hamiltonian
(A1), ΔðsÞ, is the energy gap between the ground and first
excited state of an isolated rf SQUID at zero bias. Δ also
changes with annealing parameter s. Φx

qiðtÞ is provided by a
global external magnetic flux bias along with local in situ
tunable DAC that tunes the coupling strength of this global
bias into individual qubits and thus allows us to specify
individual biases hi. The coupling energy between the ith
and jth qubit is set with a local in situ tunable DAC that
controls Φx

co;ij.
The main quantities associated with a flux qubit, Δ and

jIpq j, primarily depend on macroscopic rf SQUID param-
eters: junction critical current Ic, qubit inductance Lq, and
qubit capacitance Cq. We calibrate all of these parameters
on this chip as described in Refs. [6,8]. We calibrate all
interqubit coupling elements across their available tuning
range from 1.37 pH to −3.7 pH, as described in Ref. [25].
We correct for variations in qubit parameters with on-chip
control as described in Ref. [8]. This allows us to match jIpq j
and Δ across all qubits throughout the annealing trajectory.

Table I shows the median qubit parameters for the devices
studied here.
Figure 6 shows measurements of Δ and jIpq j versus s for

all eight qubits. Δ is measured with single-qubit Landau-
Zener measurements from s ¼ 0.515 to s ¼ 0.658 [39] and
with qubit tunneling spectroscopy from s ¼ 0.121 to s ¼
0.4 [33]. The resolution limit of qubit tunneling spectros-
copy and the bandwidth of our external control lines during
the Landau-Zener measurements prevent us from character-
izing Δ between s ¼ 0.4 and s ¼ 0.5, respectively. jIpq j is

TABLE I. Qubit parameters.

Qubit parameter Median measured value

Critical current, Ic 2.89 μA
Qubit inductance, Lq 344 pH
Qubit capacitance, Cq 110 fF
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FIG. 6. (a) ΔðsÞ versus s. We show measurements for all eight
qubits studied in this work. We use a single-qubit Landau-Zener
experiment to measure Δ=h < 100 MHz [39]. We use QTS to
measure Δ=h > 1 GHz [33]. The red line shows the theoretical
prediction for a rf SQUID model employing the median qubit
parameters of the eight devices. The vertical black line separates
coherent (left) and incoherent (right) evolution as estimated by
analysis of single-qubit spectral line shapes. (b) jIpq jðsÞ versus s.
We show measurements for all eight qubits studied in this work.
We use a two-qubit coupled flux measurement with the interqubit
coupling element set to 1.37 pH [8]. The red line shows the
theoretical prediction for a rf SQUID model employing the
median qubit parameters of the eight devices.
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measured by coupling a second probe qubit to the qubit qi
with a coupling of Meff ¼ 1.37 pH and measuring the flux
Meff jIpqiðsÞj as a function of s. jIpq j is matched between
qubits to within 3% and ΔðsÞ is matched between qubits to
within 8% across the annealing region explored in
this study.

APPENDIX B: QUBIT TUNNELING
SPECTROSCOPY

QTS allows one to measure the eigenspectrum of an N-
qubit system governed by Hamiltonian HS. Details on the
measurement technique are presented elsewhere [33]. For
convenience in comparing with this reference, we define a
qubit energy bias ϵi ≡ 2~hi. Measurements are performed by
coupling an additional probe qubit qP, with qubit tunneling
amplitudeΔP ≪ Δ, j ~Jj, to one of theN qubits of the system
under study, for example, q1. When we use a coupling
strength ~JP between qP and q1 and apply a compensating
bias ϵ1 ¼ 2~JP to q1, the resulting system plus probe
Hamiltonian becomes

HSþP ¼ HS − ½ ~JPσz1 − ð1=2ÞϵP�ð1 − σzPÞ: (B1)

For one of the localized states of the probe qubit, j↑iP,
for which an eigenvalue of σzP is equal toþ1 (i.e., the probe
qubit in the right well), the contribution of the probe qubit
is exactly canceled, leading toHSþP ¼ HS, with composite
eigenstates jn;↑i ¼ jni ⊗ j↑iP and eigenvalues ER

n ¼ En,
which are identical to those of the original system without
the presence of the probe qubit. Here, jni is an eigenstate of
the Hamiltonian HS (n ¼ 1; 2;…; 2N).
For the other localized state of the probe qubit, j↓iP,

when this qubit is in the left well, the ground state of HSþP

is jψL
0 ;↓i ¼ jψL

0 i ⊗ j↓iP, with eigenvalue ~EL
0 ¼ EL

0 þ ϵP,
where jψL

0 i is the ground state of HS − 2~JPσ
z
1 and EL

0 is its
eigenvalue. We choose j ~JPj ≫ kBT such that the state
jψL

0 ;↓i is well separated from the next excited state for
ferromagnetically coupled systems, and, thus, system plus
probe can be initialized in this state to high fidelity.
Introducing a small transverse term, − 1

2
ΔPσ

x
P, to

Hamiltonian (B1) results in incoherent tunneling from
the initial state jψL

0 ;↓i to any of the available jn;↑i states
[40]. A bias on the probe qubit ϵP changes the energy
difference between the probe j↓iP and j↑iP manifolds. We
can thus bring jψL

0 ;↓i into resonance with any of jn;↑i
states (when ~EL

0 ¼ ER
n ), allowing resonant tunneling

between the two states. The rate of tunneling out of the
initially prepared state jψL

0 ;↓i is thus peaked at the
locations of jn;↑i.
The measurement of the eigenspectrum of an N-qubit

system thus proceeds as follows. We couple an additional
probe qubit to one of the N qubits (say, to q1) with coupling
constant ~JP. We prepare the (N þ 1)-qubit system in the
state jψL

0 ;↓i by annealing from s ¼ 0 to s ¼ 1 in the

presence of large bias ϵpol < 0 on all the system and probe
qubits. We then adjust s for the N-qubit system to an
intermediate point s� ∈ ½0; 1�, such that Δ ≫ kBT=h, and
adjust s for the probe qubit to sP ¼ 0.612, such that
ΔP=h ∼ 1 MHz (here, h is the Planck constant). We assert
a compensating bias ϵ1 ¼ 2~JP to this qubit. We dwell at this
point for a time τ, complete the anneal s → 1 for the system
plus probe, and then readout the state of the probe qubit.
Figure 7 summarizes these waveforms during a typical
QTS measurement.
We perform this measurement for a range of τ, which

allows us to measure an initial rate of tunneling Γ from
jψL

0 ;↓i to jψ ;↑i. We repeat this measurement of Γ for a
range of the probe qubit bias ϵP. Peaks in Γ correspond to
resonances between the initially prepared state and the state
jn;↑i, thus allowing us to map the eigenspectrum of the
N-qubit system.
For the plots in the main paper, measurements of Γ are

normalized to [0, 1] by dividing Γ by the maximum value
across a vertical slice to give a visually interpretable
result. Figure 8(b) shows a typical raw result in units
of μs−1.
We pose ferromagnetically coupled instances of the form

HP ¼ −
X
i

hiσ
z
i þ

X
i<j

Jijσ
z
iσ

z
j; (B2)

with Jij < 0 for two- and eight-qubit subsections of the QA
processor. Figure 8(a) shows typical measurements of Γ for

FIG. 7. Typical waveforms during QTS. We prepare the initial
state by annealing probe and system qubits from s ¼ 0 to s ¼ 1 in
the presence of a large polarization bias ϵpol. We then bias the
system qubit q1 (to which the probe is attached) to a bias ϵ1 and
the probe qubit to a bias ϵP. With these biases asserted, we then
adjust the system qubits’ annealing parameter to an intermediate
point s� and the probe qubit to a point sP and dwell for a time τ.
Finally, we complete the anneal s → 1 and readout the state of the
qubits.
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a two-qubit subsection at several biases hi and at s ¼ 0.339
( ~JP < 0). We assemble multiple measurements to produce
the spectrum shown in Fig. 8(b).

APPENDIX C: EQUILIBRIUM DISTRIBUTION
OF SYSTEM

In addition to the energy eigenspectrum, QTS also
provides a means of measuring the equilibrium distribution
of an N-qubit system with a probe qubit. Suppose we are in
the limit j ~JPj ≫ kBT, such that there is only one accessible
state in the j↓iP manifold: jψL

0 i ⊗ j↓iP. As described
above, the other available states in the system are the
composite eigenstates jni ⊗ j↑iP in the j↑iP manifold,
where jni is an eigenstate of theN-qubit system without the
probe qubit attached. Energy levels ER

n of the j↑iP manifold
coincide with the energy levels En of the system, ER

n ¼ En,
even in the presence of coupling between the probe qubit
and the system. We make the assumption that the pop-
ulation of an eigenstate depends only on its energy.
Degenerate states have the same population.

Let PL represent the probability of finding the probe plus
system in the state jψL

0 i ⊗ j↓iP and let PR
n represent the

probability of finding the probe plus system in the state
jni ⊗ j↑iP. At any point in the probe plus system evolu-
tion, we expect

PL þ
X2N
i¼1

PR
i ¼ 1: (C1)

As described in the previous section, we can alter the
energy of jψL

0 i ⊗ j↓iP with the probe bias ϵP. Based on the
spectroscopic measurements of the N-qubit eigenspectrum,
we can choose an ϵP such that jψL

0 i ⊗ j↓iP and jni ⊗ j↑iP
are degenerate. Since the occupation of the state depends on
its energy, we expect that, after long evolution times, these
two degenerate states are occupied with equal probability,
PLðϵP ¼ EnÞ ¼ PR

n . Aligning the state jψL
0 i ⊗ j↓iP with

all possible 2N states jni ⊗ j↑iP, we obtain a set of relative
probabilities PR

n . These relative probabilities characterize
the population distribution in the system since they are
uniquely determined by the energy spectrum En. However,
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FIG. 8. Spectroscopy data for two FM-coupled qubits at ~JP < 0. (a) Measurements of tunneling rate Γ for three values of
h1 ¼ h2 ≡ hi. These data were taken at s ¼ 0.339. Peaks in Γ reveal the energy eigenstates of the two-qubit system. (b) Multiple scans
of Γ for different values of hi assembled into a two-dimensional color plot. For better interpretability, we have subtracted off a baseline
energy with respect to (a) such that the ground and first excited levels are symmetric about zero. Note the avoided crossing at hi ¼ 0. The
peak tunneling rate Γ ∼ jΔPhψL

0 jnij2 [33]. The solid black and white curves plot the theoretical expectations for the energy eigenvalues
using independent measurements shown in Fig. 6 and Hamiltonian (1).
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as follows from Eq. (C1), the set PR
n is not properly

normalized. The probability distribution of the system
itself is given by

PnðEnÞ ¼
PR
nP

2N

i¼1 P
R
i

; (C2)

where
P

2N

n¼1 Pn ¼ 1. At every eigenenergy, ϵP ¼ En, the
denominator of Eq. (C2) can be found from Eq. (C1), so
that the population distribution of the system Pn has the
form

Pn ¼
PR
n

1 − PL ¼ PLðϵP ¼ EnÞ
1 − PLðϵP ¼ EnÞ

: (C3)

Thus, the probability Pn to find the system of N qubits in
the state with energy En can be estimated by measuring PL

at ϵP ¼ En and using Eq. (C3).
Measurements of PL proceed as they do for the spec-

troscopy measurements. The system plus probe is prepared
in jψL

0 ;↓i. We then adjust ϵP ¼ En and an annealing
parameter s for the N-qubit system to some intermediate
point, and also sP ¼ 0.612 for the probe qubit, such that
ΔP=h ∼ 1 MHz. We dwell at this point for a time τ ≫ 1=Γ,
complete the anneal s → 1, and then readout the state of the
probe qubit. We typically investigate a range of τ to ensure
that we are in the long evolution time limit in which PL is
independent of τ. We use PL measured with τ ¼ 7041 μs to
estimate P1 and P2. The Supplemental Material [34]
contains typical data used for these estimates.

APPENDIX D: ENTANGLEMENT MEASURES
AND WITNESSES

1. Definition of entanglement

A pure state jΨi of a system S consisting of two parts A
and B, S ¼ A∪B, is entangled [16] with relation to this
bipartition if the state jΨi cannot be represented as a
product of states jΨAi and jΨBi describing the subsystems
A and B: jΨi ≠ jΨAi ⊗ jΨBi. An open quantum system is
characterized by a density matrix ρ. An open system S is
entangled [16] relative to the bipartition S ¼ A∪B if its
density matrix ρ cannot be written as a convex sum of
product states ρkA ⊗ ρkB, ρ ≠

P
kwkρ

k
A ⊗ ρkB. Here, fρkAg

and fρkBg are sets of density matrices for the components A
and B, respectively; wk ≥ 0,

P
kwk ¼ 1. If there is no

bipartition for which the system is entangled, the state is
completely separable or unentangled. If the system is
entangled for all possible bipartitions, the state is globally
entangled.

2. Wχ : A susceptibility-based, ground-state
entanglement witness

For a bipartion of the system into two parts, A and B, we
define a witness RAB as

RAB ¼ 1

4NAB

����X
i∈A

X
j∈B

~Jijχij

����; (D1)

where χij is a cross susceptibility, ~Jij ¼ EJij, and NAB is a
number of nonzero couplings, Jij ≠ 0, between qubits from
the subset A and the subset B (see Ref. [35]). We note that
at low temperature, T ¼ 12.5 mK, the measured suscep-
tibility χijðTÞ almost coincides with the ground-state
susceptibility χijðT ¼ 0Þ since contributions of excited
states to χijðTÞ are proportional to their populations,
Pn ≪ 1, for n > 1. We analyze a deviation of the mea-
sured susceptibility from its ground-state value in the
Supplemental Material [34]. To characterize global
entanglement in the system of N qubits, we introduce a
witness Wχ ,

Wχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQRABÞ1=Np

1þ ðQRABÞ1=Np

s
; (D2)

which is given by a bounded geometrical mean of witnesses
RAB calculated for all possible partitions of the whole
system into two subsystems. Here, Np is a number of such
bipartitions, in particular, Np ¼ 127 for the eight-
qubit ring.

3. Thermal density matrix ρ

Systems coupled to a thermal bath are in a mixed state
when the energy gap between the ground and first excited
states approaches kBT. Most mixed-state entanglement
measures and witnesses require knowledge of the density
matrix ρ. The density matrix can be measured using
quantum state tomography. However, this approach is
limited to a small number of qubits [41]. As an alternate
approach, we consider an N-qubit system in a thermal
(stationary) state [26]. The stationary system described by
Hamiltonian (1) can be characterized by a density matrix
that is diagonal in the energy basis, ρE ¼ diagfP1;
P2;…; P2Ng. The off-diagonal elements of this matrix
disappear on a very short decoherence time scale (within
a few nanoseconds) in the quantum annealing processor
analyzed in Ref. [6]. In thermal equilibrium, the occupation
probability Pμ ¼ e−Eμ=kBT=Z is the Boltzmann distribution
over the eigenstates jμi with energies Eμ, such that
Hjμi ¼ Eμjμi, T is temperature, and Z ¼ P

μe
−Eμ=kBT

is the partition function. The density matrix ρ ¼P
ρM̄ N̄ jM̄ihN̄j in the computation basis jM̄i, where

ρM̄ N̄ ¼ P
μPμhM̄jμihμjN̄i, is obtained from ρE by a unitary

transformation that depends on the parameters of the
Hamiltonian H. The parameters of Hamiltonian (1),
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namely, the energy scale E, the qubit biases hi, tunneling
amplitudes Δ, coupling constants Jij, as well as proba-
bilities Pμ, can be independently measured. This allows us
to restore the density matrix ρ. We emphasize that the
stationary-state entanglement, or thermal entanglement, is
robust and does not decay with time [26].

4. Concurrence C

For an open system described by a thermal density
matrix ρ, concurrence C is defined as [16,18]

C ¼ maxf0;
ffiffiffiffiffi
λ4

p
−

ffiffiffiffiffi
λ3

p
−

ffiffiffiffiffi
λ2

p
−

ffiffiffiffiffi
λ1

p
g; (D3)

where λ4 > λ3 > λ2 > λ1 are the roots of the matrix

R ¼ ρðσy1 ⊗ σy2Þρ�ðσy1 ⊗ σy2Þ; (D4)

fσxi ; σyi ; σzig are the Pauli matrices for the ith qubit, and ρ is
the density matrix of the system in the computation basis.
An entanglement of formation Ef is another measure of

two-qubit entanglement. This measure is a monotonic
function of concurrence C [16,18],

Ef ¼ F
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

p

2

�
; (D5)

where F ðxÞ ¼ −xlog2ðxÞ − ð1 − xÞlog2ð1 − xÞ is the
entropy function.

5. Negativity N

Negativity is a measure that provides a sufficient, but not
necessary, condition for entanglement of an arbitrary
number of qubits [36]. A nonzero value of negativity
detects entanglement. To calculate negativity, we find all
bipartitions of the system. For two qubits, there is only one
bipartition. An eight-qubit system can be bipartitioned into
127 (¼ 8þ 28þ 56þ 35) possible combinations of two
subsystems, A and B. In the case when the state of the
system is separable, its density matrix ρ should retain all
properties of the true density matrix after the partial
transposition of ρ with respect to the subsystem A or to
the subsystem B [16,36]. In particular, the partially trans-
posed density matrix ρTA should not have negative eigen-
values. The negativity, N ¼ ð1=2ÞPiðjλij − λiÞ, is
proportional to the sum of all negative eigenvalues λi of
the matrix ρTA , thus quantifying a degree of entangle-
ment of the subsystem A and the subsystem B. For the
eight-qubit system, we analyze negativities for all 127
partitions, N 1=7, N 2=6, N 3=5, N 4=4, and calculate their
geometrical average [42], or the global negativity, N ðρÞ ¼
ðN 1=7N 2=6N 3=5N 4=4Þ1=127. Here, the negativity N 1=7 is
equal to the product of 8 negativities for all possible
partitions of the eight-qubit system into subsystems of
one and seven qubits, and so on. Nonzero values of the

global negativity mean that all possible subsystems of the
whole eight-qubit system are globally entangled. Note that
the negativity of the maximally entangled GHZ state,
N GHZ, is equal to 1=2.

6. Entanglement witness WAB

Consider Hamiltonian (1) with measured parameters.
This Hamiltonian describes a transverse Ising model having
N qubits. The ground state jψ1i of this model is entangled
with respect to some bipartition A − B of the N-qubit
system. We can form an operator jψ1ihψ1jTA, where TA is a
partial transposition operator with respect to the A sub-
system [16]. Let jϕi be the eigenstate of jψ1ihψ1jTA with
the most negative eigenvalue. We can form a new operator
WAB ¼ jϕihϕjTA . This operator can serve as an entangle-
ment witness (it is trivially positive on all separable
states).
Let ρðsÞ be the density matrix associated with the state of

the system at the annealing point s. If we have experimental
measurements of the occupation fraction of the ground state
and first excited state, P1ðsÞ � δP1 and P2ðsÞ � δP2,
respectively, we can place a set of linear constraints
on ρðsÞ:

Tr½ρðsÞjψ1ihψ1j� ≥ P1ðsÞ − δP1;

Tr½ρðsÞjψ1ihψ1j� ≤ P1ðsÞ þ δP1;

Tr½ρðsÞjψ2ihψ2j� ≥ P2ðsÞ − δP2;

Tr½ρðsÞjψ2ihψ2j� ≤ P2ðsÞ þ δP2:

We now search over all possible ρðsÞ that satisfy the
linear constraints provided by the experimental data. The
goal is to maximize the witness Tr½WABρðsÞ� in order to
establish an upper limit for this quantity. Maximizing this
quantity can be cast as a semidefinite program [37], a class
of convex optimization problems for which efficient
algorithms exist. When this upper limit is less than zero,
entanglement is certified for the bipartition A − B.
We test the robustness of this result with uncertainties in

the parameters of the Hamiltonian. To do this, we repeat the
analysis at several points during the QA algorithm when
adding random perturbations on the measured Hamiltonian
that correspond to the uncertainty on these measured
quantities. We sample 104 perturbed Hamiltonians and,
for every perturbation, the optimization results in
Tr½WABρðsÞ� < 0.
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